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In the object detection task, how to better deal with small objects is a great challenge. The detection accuracy of small 

objects greatly affects the final detection performance. Our propose a detection framework WeBox based on weak 

edges for small object detection in dense scenes, and proposes to train the richer convolutional features (RCF) edges 

detection network in a weakly supervised way to generate multi-instance proposals. Then through the region proposal 

network (RPN) network to locate each object in the multi-instance proposals, in order to ensure the effectiveness of the 

multi-instance proposals, we correspondingly proposed a multi-instance proposals evaluation criterion. Finally, we use 

faster region-based convolutional neural network (R-CNN) to process WeBox single-instance proposals and fine-tune 

the final results at the pixel level. The experiments have been carried out on BDCI and TT100K proves that our 

method maintains high computational efficiency while effectively improving the accuracy of small objects detection. 
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Small objects are a direction that must be faced in the 

actual scene, and are the future direction of object detec-

tion. The existing object detection methods are success-

ful for large and medium-sized objects, but do not per-

form well for small objects. For example, in the ranking 

of COCO detection tasks, the average accuracy of small 

objects (APS) is usually 2 times lower than the average 

accuracy of medium objects (APM) or the average accu-

racy of large objects (APL). Considering that there are 

many small objects (40%) in COCO, this problem must 

be solved. 

Most current target detection algorithms use window 

scoring methods[1] to generate proposals or directly gen-

erate detection results[2,3]. These methods cannot be well 

adapted to multi-scale object detection. In scenes in-

volving a large number of small objects, such as traffic 

signs[4-6] and pedestrian detection[7,8], connected edges 

can be used to locate the position of the object, but this is 

expensive and it is difficult to accurately mark the edge 

on each pixel. Therefore, we intend to use the bounding 

box as a weak edge to train the edge detection network to 

generate multi-instance proposals and summarize the 

proposal-by-proposal detection results. 

In this paper, we propose a novel detection framework 

for small object detection in dense scenes to solve the 

above problems. We perceive the edge of the object 

through weak supervision, and then use the connected 

area analysis algorithm to generate a multi-instance pro-

posal. The area contains multiple objects to be detected. 

The existing average accuracy precision (AP) is for sin-

gle-instance proposals. Therefore, we used F1-score to 

weigh the pros and cons of the proposal, and revised the 

determination of the true positive (TP) for the 

multi-instance proposal, and then proposed a new 

evaluation standard for multi-instance proposals. After 

obtaining the multi-instance proposal, we use region 

proposal network (RPN) to locate a single instance in the 

multi-instance proposal and summarize the detection 

results of each proposal. Finally, we use Faster Convolu-

tional Neural Network (Faster-CNN) to further fine-tune 

the final positioning results of the WeBox to adapt to the 

detection of small objects and general objects. 

As we all know, the group proposal method shines in 

the early application of deep learning research, but with 

the development of deep learning, this method is gradu-

ally replaced. The WeBox small object detection method 

belongs to the updated application of the group proposal 

method. The specific contributions mainly include the 

following aspects: 

We proposed a grouping proposal method based on 

deep learning, and proposed a new multi-instance pro-

posal evaluation method based on bottom-up thinking; 

 We have designed a new network structure RCF-RPN. 

It can enhance the generalization ability of the network, 

and effectively detect adhered or adjacent objects, and 

has a wide range of practical application scenarios; 

The verification of the authoritative BDCI and TT100K 

data sets fully proves the effectiveness and robustness of 

our proposal method. 

In the existing object detection literature, most of them 

are for general objects, such as the classic single-stage  

methods YOLO[2] and Single Shot MultiBox Detector
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(SSD)[3], the two-stage method Faster Region-Based 

Convolutional Neural Network (R-CNN)[1], etc. The so-

lution is mainly designed for the general object data set, 

so for small objects in the image, the detection effect is 

ordinary. In recent years, more and more people have 

paid attention to small object detection, but most of the 

methods are to improve and optimize the existing object 

detection method.  

Lin et al[9] believed that the key to small object detec-

tion is how to deal with multi-scale features, and pro-

posed a multi-scale feature fusion method, which uses 

the results of different feature layer fusion to make pre-

dictions. Cai et al[10] proposed a multi-stage object detec-

tion architecture for the setting of the Intersection over 

Union (IoU) threshold in object detection. The detector is 

composed of detectors trained by the continuously im-

proved IoU threshold, so that it can select close false 

positive sequences. Li et al[11] improved the detection of 

small objects by reducing the representation difference 

between small objects and large objects, and proposed a 

new model of perceptual generative adversarial networks 

(GAN). Li et al[12] used the backbone network as an entry 

point. In view of the shortcomings of large objects re-

turning to weak and small objects difficult to find in the 

existing network, a backbone network dedicated to de-

tection tasks was proposed. Good results have been ob-

tained in the detection of small objects. At present, most 

mainstream methods focus on and how to narrow the 

difference between small objects and general objects. For 

the weak edge information that is easy to obtain for small 

objects, we propose to connect them into multi-instance 

proposals, and then locate small objects. 

For small object detection, we propose a WeBox de-

tection framework, which aims to effectively process 

small objects that are currently difficult to detect by 

learning the weak edge feature information of the object. 

The flow of this method is shown in Fig.1. It mainly in-

cludes three parts: the extraction of weak edge informa-

tion, the generation of multi-instance proposals, and the 

finer detection of each proposal. 

 

Fig.1 The pipeline of the WeBox approach 
  

The edges of objects are concise, and the edges of 

connected objects form contours, which provide good 

semantic information at the individual level. Therefore, 

the gathered edges can be used for object detection. Ob-

ject detection tasks often only have rough bounding 

boxes as supervision information. We use them as weak 

edges to perform object detection, and let the entire deep 

convolutional network learn to predict rough object 

edges. Because the RCF[13] network has richer feature 

expressions, it can obtain multi-scale information better, 

so that a weak edge detection model with better charac-

terization ability can be obtained. We regard the labeled 

bounding box of the object as a weakened edge to train 

the RCF network. After the obtained edge map is visual-

ized in the form of a heatmap, a significant target object 

area is observed, and the background area hardly pro-

duces a response. According to this feature, we directly 

obtain the rough target area on the edge map generated 

by the RCF network. 

Most of the existing network structures predict the 

classification results in the last layer. The fusion of the 

network is easily affected by the gradient divergence 

phenomenon, and the last layer is also susceptible to ex-

cessive update, which affects the network performance. 

Therefore, we propose prediction classification and cal-

culate the loss function after different depths of the net-

work layer, which can generate regulatory information at 

different depths. The loss function of the RCF network in 

the training phase is the weighted sum of multiple auxil-

iary loss functions and the loss function on the fusion 

feature, which is expressed as 
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where Lfuse is the loss value of the fusion feature, Lside is 

the loss value of each branch, W is the sum of the output 

weights, M is the order of the network, αm is the coeffi-

cient set in each stage, and each branch occupies a dif-

ferent proportion. Each branch output performs pixel 

classification. Because of the imbalance between catego-

ries, the cost-sensitive cross-entropy loss function is used 

here: 
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where β is the balance factor, and Y+ and Y- represent the 

edge and non-edge truth value set.  

By cascading a single object proposal method to a 

weakly supervised edge network, it will generate a single 

proposal with better positioning accuracy. In addition, 

because labeling the bounding box is much easier and
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lower cost than labeling the edge by pixel, our WeBox 

method fully utilizes the advantages of the edge detec-

tion network and the object proposal network, and 

achieves better performance for small object detection 

tasks. 

The RCF weak edge detection network processes the 

input image and outputs a weak edge map of the same 

size. Since we use the bounding box as the edge of the 

detected object, it is not accurate from the pixel level, but 

relatively accurate from the object perspective. Accord-

ing to the obtained weak edge graph, we use the con-

nected region analysis algorithm to separate the candi-

date object detection region. It includes the following 

steps: 

(1) Binarization of weak edge map: used to filter out 

single or very small (less than 10 pixel×10 pixel) areas 

and low confidence areas; 

(2) Determine the connected area: scan the entire bi-

narized weak edge map, and use the union data structure 

to mark the connected pixels as the same area number. 

The number starts from 1 and the maximum number in-

dicates the number of connected areas determined; 

(3) Determine the minimum enclosing frame: Use the 

connected area number information in (2) to calculate the 

maximum and minimum coordinates of the horizontal 

and vertical directions in each connected area respec-

tively as the descriptor of the minimum enclosing frame 

of the area. 

We have noticed that two or more detection objects 

that are close to each other or have occlusion will cause 

adhesion on the weak edge map, then the rough candi-

date detection area determined by the above (1)-(3) con-

tain one or more target instances. This kind of sticking is 

unavoidable, because the weak edge network will gener-

ate corresponding values at the edges of the object to be 

detected and around it. In order to ensure that the con-

nected edges form a closed curve as far as possible to 

contain the complete object, the distance Weak edges 

between nearby objects will be retained. Through this 

method, a large amount of background area is removed, 

which can be regarded as a rough proposed area. Con-

sidering that in the work related to object detection, the 

default proposal area contains only a single instance, we 

let go of this limitation and generate a multi-instance 

proposal, and then provide a new evaluation criterion for 

multi-instance proposals. 

After getting the multi-instance proposal containing 

objects, we use it as the input of the RPN, and use the 

real bounding box in the region as the positive sample 

label of the network. The RPN can predict sin-

gle-instance proposals with higher APs for the 

multi-instance proposals generated by RCF weak edges, 

and the detection results on each multi-instance proposal 

are summarized to obtain the single-instance proposal of 

RCF + RPN. We consider that the performance of RPN 

can be further improved after being equipped with Faster 

R-CNN, so we use Faster R-CNN to refine the location 

and category of target instances in the region on the 

multi-instance proposal generated by the RCF network. 

The experiment consists of three parts, the first is the 

introduction of data sets and evaluation methods. The 

second is the ablation experiment, which evaluates the 

quality of the multi-instance suggestion region generated 

by the weak edge model and the region-by-region test 

results. Finally, there is a comparison with the existing 

objects detection algorithm. 

We used two datasets, BDCI and TT100K. BDCI's 

rematch dataset, a total of 10 000 images, the image size 

is 720×1 280. Each image contains an average of 5 ob-

jects; the number of small objects is 70% of all object 

instances. We randomly used 8 000 training sessions and 

2 000 tests. The Tsinghua-Tencent100K dataset also 

contains small-sized traffic signs. Contains about 9 000 

images, each with a size of 2 048×2 048. The average 

image contains 7 small objects, and the small object 

number is 35%. Of these, 6 088 images were for training 

and the remaining 3 055 images for testing. 

The proposals were divided into two categories: 

multi-instance proposals and single-instance proposals. 

The existing proposals algorithm was for single instance, 

and its evaluation index AP was not suitable for the 

multi-instance proposals. In view of this situation, we 

proposed an evaluation protocol suitable for the 

multi-instance proposals. In the case where the 

multi-instance proposal contained multiple truth-valued 

mark areas, the IoU of each truth-valued area and the 

recommended area was likely to be less than the thresh-

old. According to the original standard, it could be re-

garded as false detection, but in fact the proposal de-

tected the object area in a looser way. Therefore, as long 

as one or more true value regions were included, it was 

regarded as True Positive (TP), which was a criterion 

applicable to the multi-instance suggestion region, and 

was referred to herein as "including rules". 

The multi-instance proposals were determined by the 

RCF weak edge without a confidence score. Hence, the 

P-R curve and the AP corresponding to the P-R curve are 

not suitable. Using F1-score to weigh the Precision and 

Recall on the unordered result was a better approach, the 

higher the score corresponding to the better the per-

formance of the algorithm. We used F1-score to evaluate 

the quality of a multi-instance proposals, where the TP 

decision rules used the newly proposed inclusion rules. 

We separately evaluate the quality of the multi-instance 

recommendation area generated by the RCF weak edge 

network and the RPN network. The evaluation criteria are 

the evaluation rules introduced in 4.1. In the experiment, 

two RCF networks were compared, and the basic learning 

rates were 1e-5 and 1e-6, respectively, denoted RCF_B5 

and RCF_B6. Considering that the RPN performance in 

the prediction phase is affected by the TopN parameters, 

the top 20 and 50 proposals are selected for evaluation. 

Tab.1 shows the Recall, Precision, and F1 scores obtained 

after the evaluation of each of the four schemes. Among 

them, the RCF_B5 and RCF_B6 have the highest F1 

scores, respectively 65.52% and 73.92%. According to the
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evaluation criteria proposed in this paper, RCF_B6 has the 

best performance; Under different TopN values of the 

RPN network, the F1 scores are all below 20%, and the 

performance is poor. In addition, note that the F1 score is 

the harmonic average of precision and recall. Only when 

precision and recall scores are close and both are high, can 

you get a high F1 score. 

 

Tab.1 Evaluation results for different scenarios of 
RCF and RPN 

 TopN Base_lr Recall Precision F1 

-(<20) 1×10-6 91.34 51.09 65.52 RCF_B5 

RCF_B6 -(<20) 1×10-5 86.22 64.7 73.92 

20 1×10-3 25.80 9.37  13.74 RPN_T20 

RPN_T50 50 1×10-3 72.01 10.46 18.27 

 

In this part, we mainly explore the performance of the 

branch loss function on the RCF weak edge network 

under the multi-instance proposal evaluation standard. In 

the experiment, the two schemes are compared. 

RCF-DSN and RCF-L5. There is also a loss function on 

the features gathered at each stage. RCF-L5 removes the 

branch loss function from stage 1 to stage 4, and only 

retains the loss function of stage 5 and converging fea-

tures. RCF-DSN and RCF-L5 have the same training 

conditions except for different loss functions in the net-

work structure, including using 1e-6 as the initial learn-

ing rate, batch size of 12, and performing 60 000 itera-

tions. Tab.2 shows the experimental results. As the 

number of iterations increases, Recall decreases while 

Precision and F1-score increase, and is basically stable 

after 30 000 iterations. In terms of F1-score, RCF-DSN 

is always higher than RCF-L5, so the multi-loss network 

structure of DSN has a higher score on the F1-score of 

the multi-instance recommendation area. 

 

Tab.2 Effect of branch loss function on RCF 

 RCF-DSN RCF-L5 

Iter Recall Precision F1 Recall Precision F1 

5k 96.09 32.46 48.52 97.98 27.21 42.59 

10k 95.43 33.54 49.64 96.42 28.35 43.82 

15k 93.76 39.55 55.63 94.74 35.04 51.16 

20k 90.53 57.74 70.51 92.94 42.97 58.77 

25k 86.73 63.36 73.22 89.58 57.34 69.92 

30k 89.29 61.99 73.17 88.60 59.92 71.49 

35k 85.69 65.20 74.06 88.19 60.80 71.19 

40k 89.25 62.05 73.20 87.57 61.87 72.51 

45k 85.01 66.24 74.46 87.35 62.24 72.69 

50k 89.22 62.06 73.20 87.28 62.32 72.72 

55k 85.03 66.20 74.40 87.20 62.31 72.68 

60k 89.22 62.04 73.19 87.11 62.37 72.69 

 

We compare our proposed method with the current 

mainstream methods on the T100K datasets. The results 

in Tabs.3 and 4 show that our method greatly improves 

the detection accuracy of small target objects while en-

suring robustness. 

The results in Tab.4 indicate that our proposed method 

has achieved excellent performance in both AP and APS. 

The Webox achieving 20.6 of AP, and has significantly 

better precision than other algorithms under Recall con-

ditions greater than 0.45, mainly because the algorithm is  

based on RCF weak edge, which can achieve a close to 

50% F1 score with a small number (less than 20, average 

of 6) of multi-instance suggestion regions, so the entire 

algorithm can achieve a higher AP. 

 

Tab.3 Comparisons of final results on TT100K dataset 

Method Backbone APS AP AP50 

Faster R-CNN[1] VGG16 9.7 34.6 76.6 

LOCO[14] VGG16 31.7 51.5 91.7 

WeBox VGG16-Resnet50 43.8 38.2 76.3 

 

Tab.4 Comparisons of final results on BCDI dataset 

Method Backbone APS AP AP50 

Faster R-CNN[1] VGG-16  7.0 12.1 37.8 

Faster R-CNN[1] RF_VGG16_atrous 14.1 17.2 51.2 

LOCO[14] VGG-16  9.3 12.9 32.9 

WeBox VGG16-Resnet50 17.7 20.6 52.4 

 
 In this paper, a new object detection framework We-

Box was proposed. By learning and predicting weak 

edges, it could effectively cope with small and general 

size targets. The multi-instance proposals were further 

accurately detected and classified to obtain the result of 

the whole image. The whole algorithm could be used as a 

proposal algorithm or as a multi-class detection algo-

rithm, and only needed to specify the second network 

separately. WeBox better solved the weakness of the 

proposed regional algorithm based on regional scoring, 

and naturally detected the existence of small objects. 
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